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The unitarity equation is used to determine the phases of electron scattering amplitudes from crystals. 
A sufficient condition is derived for the phases to be determined up to a possible twofold ambiguity. 
Successful comparison has been made with a theoretical test case. 

Introduction 

The purpose of this work was to investigate how far 
the unitarity relation, viz. the conservation of electrons, 
could be used to reduce the phase ambiguity of elec- 
tron scattering from crystals. The approach was 
suggested by the successful use of a similar technique in 
the analysis of high-energy pion-pion scattering 
(Newton, 1968; Martin, 1969; Tortorella, 1972.) It is 
based on the fact that the conservation requirement 
imposes a non-linear constraint upon the scattering 
amplitude, which, under favourable conditions, may be 
iterated to yield the phases from a knowledge of the 
intensities. 

In the following section we derive the unitarity rela- 
tion for elastic electron scattering. In § 2 it is applied to 
scattering from a crystal with a reflexion-symmetric 
potential, where it is shown to impose a non-linear 
constraint upon the scattering amplitude. This is used 
in § 3 to establish an iterative scheme of phase deter- 
mination, together with a sufficient condition, equation 
(3.12), for the existence of a unique solution to which 
it converges. § 4 contains a successful comparison of 
the method with test data generated by using the phase- 
grating approximation for scattering of 500 keV elec- 
trons from sodium. The general results are then re- 
viewed in the conclusion. 

1. The unitarity equation 

If we consider the scattering of electrons from a tar- 
get, then the asymptotic outgoing scattering states, 
[~u, out), are related to the asymptotic incoming scat- 
tering states, 1~, in), by a linear operator, S, the 
scattering matrix (Taylor, 1972) 

I~u, out )=S[~,,  in ). (1.1) 

In the absence of bound states, both the sets of asymp- 
totic outgoing and incoming states are complete. It 
follows that S is a unitary operator: 

S + S = I .  (1.2) 

The above equation is the mathematical expression of 
the physical requirement that the total number of elec- 
trons involved in the scattering process be conserved. 
It imposes a non-linear constraint upon any descrip- 
tion of the process and consequently provides a 
possible iterative mechanism for augmenting the 
amount of information available from experimental 
data. 

In order to display it in a usable form we need to 
introduce several subsiduary concepts, chief of which 
is the transition matrix, T, defined by 

S= 1- iT .  (1.3) 

In terms of the transition matrix the unitarity condi- 
tion becomes 

i ( T - T ÷ ) = T + T  (1.4) 

or, considering plane-wave matrix elements,* 

(kl Tlko)-  (kiT +lko) 

- i  I d3q(klT+l@ (qlTIk0). (1.5) 

Now if T is invariant under time and space reflexions, 
(the validity of which will be discussed later), then 

(kl Tlko) = (ko[ TIk) (1.6) 

and consequently 

2 Im (klZlk0)= - I d3q(qlZlk)*(qlZlk°)" (1.7) 

If the interaction is independent of time and falls off 
sufficiently rapidly with distance, then energy is 
conserved by the asymptotic amplitudes. As a result, 
the transition-matrix elements are proportional to an 
energy-conserving delta function. This enables the 
scattering amplitude, f(k,k), to be defined by 

<klTlko) = -  2zc ~(Ek_Eko)f(k, ko) (1.8) 
m 

* We employ the nota t ion  d3q=(2r0-3d3q,  ~3(q)= 
(27r)363(q). 
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where Ek is the energy of an electron of mass m corre- 
sponding to a momentum k. 

The formal analysis outlined above may be related to 
concepts which are more familiar in potential scattering 
by writing the Lippmann-Schwinger equation of 
scattering (Newton, 1966) in an operator form as 

T(Z)= V+ V(Z- Ho)-~T(Z) (1.9) 

where H0 and V are the free and interaction Hamil- 
tonians respectively. It may then be shown (Taylor, 
1972) that if the potential falls off sufficiently rapidly, 
the above transition operator is related to the scattering 
amplitude by 

to a final momentum k, by an infinite crystal defined 
by the lattice vectors a, b and c. In order to describe 
the experimental situation we must consider crystals 
of finite width, which will be taken to be along the c 
axis. Bragg's law then applies only to the a,b plane, 
and the expression for the transition matrix element 
takes the form, 

(klTlko) = ~ F(M, k, ko)~2[(k- ko) ±~ + M] (2.1) 
M 

where M is the two-dimensional vector 

M = l ~ + m b ,  (2.2) 

2z~f(k, k0)= - m  lim (klT(Ep+ie)lko). (1.10) 
8J,0 

In a previous publication (Boyce, Burge & 
McCloughrey, 1972) it was shown that for an infinite 
crystal with lattice vectors a, b and c respectively, the 
matrix elements of T(Z) satisfy, 

(klT(E+ie)lko)= ~ [ 1 -  17G]odV, M 
L,M 

x 83(k-ko+M) (1.11) 

where L and M denote reciprocal-lattice vectors, 

L=l~+mb+n~ (1.12) 

in which a, b and c are the unit vectors of the inverse 
lattice, and are defined in Appendix A. ~'~M is the 
Fourier transform of a single lattice potential, evaluated 
at L - M ,  while G(k; E) is the free-electron propagator 
corresponding to an energy E=h2K2/2m 

2m 
G(k;E)= --~-(K2-k2+ie) -1. (1.13) 

We now reconsider the assumptions of time and 
space reflexion invariance employed in the derivation 
of equation (1.6). As the potential is time-independent, 
it follows that S, and hence T, is invariant under time 
reflexion. Under space reflexion, however, the poten- 
tial transforms as V ( r ) ~  V(- r ) .  As the summations 
involved in equation (1.11) are symmetric under re- 
flexion T will be invariant if V is. Therefore we are 
assuming that 

V(r)= V ( - r )  (1.14) 

and the class of crystals which can be considered is 
subject to this restriction. The unitarity relation still 
has content whenever this condition is relaxed, how- 
ever its usefulness as an iterative mechanism is greatly 
reduced. 

In the following section we shall consider the case 
of crystals of finite thickness. 

2. The unitarity equation for scattering from a crystal 
of finite thickness 

In the previous section we considered the elastic 
scattering of electrons from an initial momentum k0 

while we may express vectors in terms of their com- 
ponents in the ~,b plane, and along ~, e.g. 

k=k±C+kc~. (2.3) 

As the total potential falls off sufficiently rapidly in 
the c direction we may extract the delta function which 
expresses energy conservation and express equation 
(2.1) in terms of the scattering amplitude as 

(klTlk0) 
=*(k2-k0 2) ~f(M,k, k0)~2[(k-k0)±C+M]. (2.4) 

M 

If we reconsider equation (1.11), then it may be ob- 
served that, apart from the delta function, the mo- 
mentum dependence of the amplitude arises from 
components of the form 

[~vrG]LM = ~2m V ( L - M )  { K 2 - ( k o + i ) z + i e )  -1 

(2.5) 
For potentials which decrease sufficiently rapidly so 
that ko2>~M 2 for all significant values of M, then 
(ko+M)2_ko z, and consequently we may regard the 
scattering amplitude as a function solely of ko 2 and M. 

Upon assuming that this approximation holds also 
for crystals of finite width, the unitarity equation, (1.7), 
becomes 

Im ~ f(k20, L)~(k 2 -  ko2)~Z[(k - ko) 1" + L] 
L 

= Id3qM,~f(q2,M)*f(k~,N)~(k2-q2)~(q2-k2o) 

2 ± c  2 ± c  x 6 [(k-q) 5-5410 [(q-k0) 5-N (2.6) 

and consequently 

Imf(k°2'L)= I d3q ~f(qZ'M)*f(k~'L-M) 
M 

× 6(q2- k2152[(q_ ko).±, + L -  M]. 

The lemma 

(2.7) 

I daq-8(q2 _ ko2)Sa[(q_ k0)±c + N] 

_~ (2z0a(2vk0fi)- 1 (2.8) 
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which is derived in Appendix A, allows the unitarity 
relation to be reduced to 

Im f(ko2,L) = (2n)a(2vko~:)-I 
x ~f(k~,M)*f(k~,L-M). (2.9) 

M 

The above non-linear equation expresses the con- 
servation of probability during the scattering process. 
We wish to investigate to what extent it limits the 
possible scattering amplitudes; specifically how much 
a knowledge of the modulus of the amplitude, together 
with the conservation of probability, determines the 
phase of the amplitude. As the constraining equation 
involves only a summation the analysis is considerably 
easier than the corresponding case of central potential 
scattering. 

3. Existence and uniqueness of  solutions 

In order to analyse equation (2.8) it is convenient to 
define 

( 2 ~ )  3 

F(L)= 2vk----~f(k2,L) (3.1) 

as the equation becomes 

Im F(L)= ~ F(M)*F(L-M) (3.2) 
i 

where L and M are two-dimensional vectors in the 
ab plane of reciprocal space, as given by equation (2.2). 
We wish to determine sufficient conditions for a knowl- 
edge of the modulus of F(L) to determine its phase 
uniquely and to enable it to be calculated by iterating 
equation (3.2). This problem has already been solved 
for an isolated spherically symmetric potential. 
(Newton, 1968; Martin, 1969; Tortorella, 1972.)The 
analysis which follows is a direct application of the 
earlier results to the case of a crystal. 

Let the amplitude F(L) have modulus G(L) and 
phase ~p(L). The unitarity equation becomes 

G(L) sin ~(L)= ~ G(M)G(L-M) 
M 

xcos {~0(M)-~0(L-M)}. (3.3) 

For L =  0 the equation is 

G(0) sin ~0(0) = ~ G(M)G(-M). (3.4) 
M 

Therefore the principal value of the phase of the centre 
spot is uniquely determined. We may utilise this by 
rewriting equation (3.3) for L # 0  as 

RG(L) sin {tp(L)-~}= ~ '  G(M)G(L-M) 
M 

xcos {~o(M)-9(L-M) }, (3.5) 

where the prime indicates that the terms M = 0  and 
M =  L are to be omitted from the sum, while 

R2= 1-4G(0) sin ~0(0)+4G2(0) (3.6) 

and 

{1-2G(0) sin ~0(0)} tan (=2G(0) cos 9(0). (3.7) 

The above equation suggests that we consider the 
mapping 

(p --+ dd'(~0) (3.8) 
where 

d/Z'(tp) =~ +  sin -1 [R -1 ~ 'H(L ,M)  
m 

xcos {~0(M)-~(L-M)}] (3.9) 
with 

G(M)G(L-M) if G(L) # 0 
H(L,M)= G(L) 

=0 if G(L)=0. (3.10) 

Upon defining 
a = s u p  {~ '  H(L, M)} (3.1 l) 

L M 

we may state the following theorem: 
If 

Q < a{4c~ZG2(0) + 1 }~/2_ 2aZG(0) 
where 

then 

(3.12) 

(I/~ 
- 1 ) 1/2 

a =  8 (3.13) 

~=dd/(fp) (3.14) 

has a unique solution which may be obtained by 
iterating the equation. 

The proof of the theorem proceeds by showing that 
subject to the condition expressed by equation (3.12) 

-+ d#(~0) is a contraction mapping in a suitable 
metric space. We define the norm t1"11.o by 

I1~11oo= sup I~0(M)-~l (3.15) 
M#o 

and consider the set 

~= {9111~011oo < c~}. (3.16) 

As the space (e, I1"11oo) is isomorphic to Lo, the space of 
bounded sequences, it is a Banach space. It is shown in 
Appendix B that ~0--* dd'(~) is a strict contraction 
mapping if ~ e ~- where 

~ -=  {~0111~011oo-< sin -~ (R-~Q)} (3.17) 

and the conditions of equation (3.12) apply. But ~- is a 
closed subset of e and is thus complete, therefore, by 
the contraction-mapping principle, ¢ ~// /( tp) has a 
unique fixed point which may be obtained by iteration. 

Physically this means that if equation (3.12) is 
satisfied then the phase of the scattered amplitude is 
uniquely determined by its modulus. It is possible that 
the phase may still be determined even if equation 
(3.12) is not satisfied, since when and how it becomes 
ambiguous are at present unanswered questions. 

In considering equation (3.9) rather than equation 

A C 30A - 6* 
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(3.5) a principal value restriction was imposed. Thus, 
given a solution of equation (3.9), ~0(L), either ~0(L) or 
rc-~0(L) is a solution of equation (3.5), leading to a 
twofold ambiguity for each spot. In any physical case, 
however, the phases are likely to vary little between 
adjacent spots, so that this ambiguity is unlikely to 
provoke significant difficulty. 

4. A test example 

In order to make use of the analysis presented above it 
is necessary to obtain absolute measurements of experi- 
mental intensities. As these measurements were not 
available the method was tested by comparison with 
theoretical data which was generated by using the 
phase-grating approximation. 

In terms of the scattering matrix, the phase-grating 
approximation corresponds to the assumption 

S = e x p ( - i V )  (4.1) 

where V is the reduced potential of the scattering 
material. Upon comparison with equation (1.2) it may 
be seen that if the potential is Hermitian, then the 
approximation satisfies the unitarity equation and 
hence provides a valid example against which the 
iterative scheme may be tested. From equation (1.3) 
it follows that the phase-grating approximation for the 
transition matrix is 

T=i(exp ( - i V ) -  1} (4.2) 

and that it satisfies the Lippmann-Schwinger equation 
to first order in V. 

If the specimen is a crystal of finite width along the 
e axis, t h e n  the phase-grating approximation to the 
scattering amplitude, defined by equation (1.8) is, 

where 

and 

f(k,  k0)=i ~ [exp ( - i V ) -  1]0L~Z(k-k0-L) (4.3) 
L 

~'LM= I d3r exp {ir. (L -M)}V(r )  (4.4) 

L=l~+ml~,  (4.5) 

the integration in the c direction being over the thick- 
ness of the crystal. 

The amplitudes corresponding to the scattering of 
500 keV electrons by a layer of crystalline sodium three 
unit cells thick were calculated using equation (4.3) 
for diffraction spots within the circle (12+m2)1/2= 10, 
the lattice potential being obtained by Fourier trans- 
forming the appropriate structure factors (International 
Tables for X-ray Crystallography, 1962). The moduli 
and phases so obtained are shown in Tables 1 and 2 
respectively. 

Using the moduli of the amplitudes, equation (3.12) 
was verified to hold. A unitary set of phases was then 
generated by iterating equation (3.9), starting from a 
random set of phases. The resulting set is shown in 

Table 1. Amplitudes (× 10 3) obtained using the phase- 
grating approximation 

k 
h 0 1 2 3 4 5 6 7 
0 33.5 9"32 4"74 2"74 

1 13"0 6"13 3-52 2"16 

2 9-32 6-79 4"14 2"53 

3 6"13 4"41 2"87 1"89 

4 4"74 4"14 3"01 2"09 
5 3"52 2"87 2"16 1"49 

6 2"74 2-53 2-09 1.53 
7 2"16 1"89 1.49 1"10 

8 1.73 1.63 1"37 1-08 

9 1-33 1-19 1-05 

10 1"08 1"05 

8 9 10 
1.73 1.08 

1.33 

1.63 1.05 

1.19 

1.37 

1-05 

1-08 

k 
h 0 1 2 3 4 5 6 7 8 
0 1-04 2.89 4.31 5-45 5.99 

1 2.25 3.75 4.91 5-75 
2 2.89 3.55 4-60 5.58 6.03 
3 3.75 4.46 5.36 5.90 

4 4.31 4.60 5.26 5.79 6.13 

5 4.91 5-36 5.75 6-11 

6 5.45 5.58 5.79 6.09 5.81 

7 5.75 5.90 6.11 5.90 
8 5-99 6.03 6-13 5.81 

9 6.12 6.04 5.44 

10 5.73 5.52 

9 

6.12 

6-04 

5-44 

10 
5-73 

5-52 

Table 3. Phases ( × 1 O) obtained by iterating the unitarity 
equation 

k 
h 0 1 2 3 4 5 6 7 8 
0 1.04 2.88 4.29 5.42 5-97 
1 2.24 3.73 4.88 5.72 6.14 
2 2.88 3.53 4.57 5.56 6.02 5-64 
3 3.73 4.44 5.33 5.88 6-09 

4 4-29 4.57 5.23 5.76 6-14 

5 4.88 5.33 5-72 6-11 5-55 

6 5.42 5.56 5.76 6.09 5.89 

7 5.72 5.88 6.11 5.97 

8 5.97 6.02 6.14 5.89 
9 6.14 6.09 5.55 

10 5-83 5.64 

9 10 
5-83 

Table 3. The phases were found to be independent of 
the initial values employed in the iteration, and may be 
observed to be within 2% of the expected phases of 
the phase-grating approximation. Therefore the test 
case confirms the efficacy and uniqueness of the itera- 
rive procedure. 

Table 2. Phases ( × 10) obtained using the phase-grating 
approximation 
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5.  C o n c l u s i o n s  

By considering the elastic scattering of electrons from 
thin crystals having reflexion-symmetric potentials, a 
method has been developed for determining the phases 
from the absolute intensities of the diffraction spots. A 
condition, equation (3.12), has been derived which 
guarantees that the phases so obtained are subject to 
at most a twofold ambiguity of the form a or n - ~ .  In 
any experimental case it is expected that the quasi- 
smooth variation of phase between adjacent diffraction 
spots will further reduce the ambiguity. 

The method has been sucessfully tested against data 
generated by using the phase-grating approximation 
for 500 keV electrons scattering from a thin crystal of 
sodium. Possible further developments of the method 
include an investigation of when and how ambiguity 
may arise if equation (3.12) is violated, the introduc- 
tion of inelastic scattering, and the relaxation of the 
condition of reflexion symmetry of the potential. 

I d3q ~(q2 _ k~) 52[(q_ k0)±¢ + N] 

=(2n)3(2v)-~A -~/2 (A.9) 

which is the required equality. 
If k~>>N 2, then A _~ko2~ 2, and hence 

I d3q~(q2_ ko~) 52[(q_ ko)±C + N] _ (2n)3(2vko?) -~ 

(A.10) 

which is the form used in equation (2.8). 

APPENDIX B 

From equation (3.9) 

II~e'(~0)ll~_< sup sin -x [R -~ ~ '  H(L, M)] _< sin -i  (R-aQ) 
L # 0  M 

(B.1) 

where Q is defined by equation (3.11). Hence 

The authors wish to thank Professor R. E. Burge 
for much advice and constant encouragement during 
the work. 

APPENDIX A 

In order to establish the relation 

I d3q~(q2_ k~)g[(q- ko) ±¢ + N] 

=(2n)3(2v) -~ {(N.[) 2+~x(k~-N2)}-1/2 (A.1) 

we expand in terms of the reciprocal-lattice vectors 
i, b and ~., which are defined by 

= 2nv- lb x c (A.2) 

and its cyclic permutations, with 

v = a .  (b x c) (A.3) 

being the cell volume. 
Now if we expand 

q = ~ a + ~ b b + ~ C ,  (A.4) 

then by choosing a particular coordinate frame we may 
easily show that 

(2n) 3 
I d 3 q - v  f d3~ (A.5) 

while at q ± ¢ = - N  

r~(q2-k~)=½A-X/2{r~(~-q+)+r~(~t~-q_)} (A.6) 

where 
~2q_+ = N .  ~ + A 1/z (A.7) 

with 
A = (N .  ~)2 + (k 2_ N2)~2. (A.8) 

But q_ corresponds to the backward-scattering am- 
plitude, which is negligible, therefore, upon combining 
equations (A.5) and (A.6), 

~ -=  {~0111~0ll~o_< sin -1 (R-1Q)} (B.2) 

is mapped into itself by ~0 ~ J¢/((0). 
In order to derive sufficient conditions for the 

mapping to be strictly contractive we consider 

= sup Isin -~ A(v) - s in  -1A(~0)[ (B.3) 
L ¢ 0  

where 

A(ep)=R -1 ~ 'H(L ,M)  cos {~0(M)-(a(L-M)} (B.4) 
M 

and hence 

'H IA(v)-A(~0)I<_2R-ZQ ~ (L,M) 
M 

× sin½ { v(M) - ~0(M) - v ( L -  M) 

+ ~0(L-M)} <2R-20211~-~ol[o~. (B.5) 

But sin-1 x is a convex function of x, therefore 

Isin - 1 A ( ~ ) - s i n  -1A(cp) [  

<_(1-R-ZQZ)-I/ZlA(~)-A(~o)[ (B.6) 

and, upon combining equations (B.5) and (B.6), the 
condition for a strict contractive mapping 

becomes 

v/z. 

where 

I I~ (~ ) -  ~(~0)11oo < I1~- ~011oo (B.7) 

2R-EQ2(1-R-ZQ2) -~/2 < 1, (B.8) 

Q < o~R 

e = " 8 " ( B . 9 )  
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Now 

sin fo(O) = ~ H(O,M) 
M 

= ~ '  H(O,M) + G(O) 
M 

< Q + G(0). (B. 10) 

Hence a sufficient condition to satisfy equation (B.8) is 

i.e. 

Q < ~t[1 - 4G(O)Q] 1/2 (B. 11) 

Q < c~[4~2G2(0) + 1] 1/2- 2~2G(0). (B.12) 
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Facetting the Dodecahedron 
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Rules are given for the construction of facetted polyhedra which ensure that the reciprocal figures are 
also polyhedra. The complete set of 22 facetted dodecahedra is enumerated, depicted and correlated 
with the stellations of the icosahedron. 

Introduction and definitions 

The name polyhedron implies a definition in terms of 
the fiat polygonal faces of the figure. This viewpoint 
leads naturally to the idea of stellating a polyhedron by 
extending the planes of the faces to meet again at new 
edges and vertices. Less obvious is the dual process, 
facetting, in which the vertices are linked together to 
give new edges and new faces (or facets). Coxeter 
(1963) has given an authoritative account of both con- 
structions but treats only those cases where the derived 
polyhedra have regular polygonal faces or vertices. 
This is a severe restriction, satisfied by only five of the 
59 stellated icosahedra enumerated by Coxeter, Du 
Val, Flather & Petrie (1938). It does, however, have 
the effect of ensuring that the derived polyhedra have 
well-defined reciprocals, a condition not met by many 
of the 59 icosahedra. 

The operation of reciprocating a polyhedron (P) 
consists in constructing a set of points reciprocal to the 
planes of the faces of P; the centre of P is taken as the 
centre of inversion. The new points are identified with 
the vertices of the reciprocal (R); they are linked by 
edges whenever the corresponding faces of P have an 
edge in common. It follows that the vertices of P are 
reciprocal to the faces of R and that P and R are topo- 
logically dual. Clearly it is possible to define the face- 
tions of P and the ~tellations of R in such a way as to 

maintain duality. However, one cannot construct 59 
facetted dodecahedra by reciprocating the stellated ico- 
sahedra of Coxeter et al. (1938), since these were de- 
scribed as solids built up from fundamental cells 
defined by the extended faces of the icosahedron. The 
reciprocal cells overlap one another and so cannot be 
used in an analogous way. If, however, one treats a 
polyhedron as a surface, defining precisely how the 
faces are to be joined together, the construction of the 
reciprocal follows automatically. This procedure leads 
to a convenient description of facetting, through the 
definitions which follow: 

1. An edge is a straight line connecting two vertices. 
2. A polygon is an endless chain of coplanar edges 

in which every vertex lies at the end of two and only 
two edges. The edges may intersect to give star or 
skew polygons but the intersections are not counted as 
vertices. 

3. A face (or facet) is a plane surface with a poly- 
gonal boundary. If the chain of edges winds round the 
centre n times the face will have n layers, which may be 
connected by a winding point. 

4. A polyhedron is an unbounded surface composed 
of faces joined together along their edges in such a 
way that every edge of the polyhedron is the edge of 
two and only two faces. The faces may intersect but 
the intersections are not counted as edges. 

So far, this follows Coxeter (1963), but does not 


